Miscibility Studies on a Copolyester of Bisphenol-A with Terephthalic and Isophthalic Acids/Bisphenol-A Polycarbonate Blends

Dolunay Sakar, Fatih Cakar, Ozlem Cankurtaran, Ferdane Karaman
Department of Chemistry, Yildiz Technical University, Istanbul-Esenler 34220, Turkey

Received 14 July 2009; accepted 21 December 2009
DOI 10.1002/app. 31993
Published online 2 March 2010 in Wiley InterScience (www.interscience.wiley.com).

Abstract

The miscibility behavior of the blends of a copolyester of bisphenol-A with terephthalic and isophthalic acids (PAr) and a bisphenol-A polycarbonate (PC) was studied in dilute chloroform solutions at $25^{\circ} \mathrm{C}$. The intrinsic viscosity and Huggins' parameter of the binary mixtures were determined from the intercept and slope of the linear straight line between specific viscosity and the overall polymer concentration at the studied compositions. From experimental results of the intrinsic viscosities of the mixtures, some miscibility parameters $\Delta b, \Delta b^{\prime},(\Delta b)^{G}, \Delta[\eta]$,

α, and β were obtained by applying the criteria proposed by the research groups Krigbaum and Wall, Catsiff and Hewett, Garcia et al., Sun et al. and Jiang and Han, respectively. The miscibility of mixtures was also studied by using differential scanning calorimetry and fourier transform infrared spectroscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 309-314, 2010

Key words: bisphenol- a polycarbonate; Polyarylate; blends; miscibility; viscosity

INTRODUCTION

Blending of polymers has given a new direction for developing novel materials. The manifestation of the superior properties of polymer blends depends upon the miscibility of its components at the molecular scale. ${ }^{1}$ The most commonly used techniques for investigation of polymer-polymer miscibility are thermal analysis, ${ }^{2,3}$ electron microscopy, ${ }^{4,5}$ and spectroscopy. These techniques are very powerful for such applications, but they are somewhat expensive for most of the researchers. Therefore, other methods on investigation of polymer-polymer miscibility were proposed either using alternative properties or low cost equipment. Among them, viscometry is a very promising technique. Several works on polymer-polymer miscibility via viscometry have been done in recent years. ${ }^{6-13}$

The polycarbonates are well known high performance, engineering molding plastics. Bisphenol-A polycarbonate (PC) is a transparent high performance thermoplastic having good physical properties such as toughness, dimensional stability, good impact strength, high heat and electrical resistance. Because of these attributes, polycarbonate is used in a wide va-

[^0]riety of common products including digital media (e.g., CDs, DVDs), electrical and electronic equipment, automobiles, sports safety equipment, reusable food and drink containers, and many other products. ${ }^{14,15}$ On the other hand, polyarylate (PAr) is a kind of aromatic polyester of bisphenol-A with terephthalic and isophthalic acids $(50 / 50)$ that combine clarity, high heat deflection temperature, high impact strength and good electric properties with inherent ultraviolet stability and flame resistance. ${ }^{16}$ Attempts can be made to blend these polymers to get composites with a high performance molding plastic with good ultraviolet stability and flame resistance. Chemical structures of PC and PAr were given in Scheme 1.

In this study, the miscibility of PAr and PC was evaluated by several techniques such as viscometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Viscometric analysis of polymer-polymer miscibility in dilute solution is based on the Huggins' equation which reflects the relationship between specific viscosity and polymer concentration. DSC is used to investigate the miscibility of the polymer blends using the single glass transition criterion in the binary mixtures. ${ }^{3}$ FTIR is used to seek specific interactions between components of the mixture depending on shift of the characteristic peaks.

THEORETICAL BACKGROUND

For the ternary mixture of polymer 1, polymer 2, and a common solvent, at constant weight ratio of

Scheme 1 Chemical structures of PC (a) and PAr (b).
polymer 1 to 2 for a given composition, m, the classical Huggins' equation is written as ${ }^{17}$

$$
\begin{equation*}
\left(\eta_{\mathrm{sp}}\right)_{m} / c_{m}=[\eta]_{m}+b_{m} c_{m} \tag{1}
\end{equation*}
$$

where $c,\left(\eta_{\text {sp }}\right) / c,[\eta]$, and b are concentration, reduced viscosity, intrinsic viscosity and viscometric interaction parameter of the polymer in the solution, respectively, while subscript " m " denotes "mixture".

Parameter b_{m}, which reflects the binary interactions between polymer segments is related to the Huggins' coefficient, k_{H}

$$
\begin{equation*}
b_{m}=k_{H}[\eta]^{2} \tag{2}
\end{equation*}
$$

The miscibility of the polymer 1 and 2 is estimated by comparison of the experimental and ideal values of b_{m} and $[\eta]_{m}$. The experimental values ($b_{m}^{\exp }$ and $[\eta]_{m}^{\exp }$) are determined from the slope and intercept of the linear straight line plotted according to eq. (1) for solutions containing one of the polymer in binary mixtures or both of them at a given ratio in ternary mixtures in a solvent.

Krigbaum and Wall ${ }^{18}$ have defined the ideal value of the interaction parameter $b_{m}^{i d}$ as

$$
\begin{equation*}
b_{m}^{i d}=b_{11} w_{1}^{2}+b_{22} w_{2}^{2}+2 b_{12}^{i d} w_{1} w_{2} \tag{3}
\end{equation*}
$$

and the $b_{12}^{i d}$ as a geometric mean

$$
\begin{equation*}
b_{12}^{i d}=b_{11}^{1 / 2} b_{22}^{1 / 2} \tag{4}
\end{equation*}
$$

The miscibility criterion Δb was described by Krigbaum and Wall: if $\Delta b=b_{m}^{\exp }-b_{m}^{i d}>0$, polymer blend is miscible since attractive molecular interactions are present while if $\Delta b<0$, polymer blend is immiscible since repulsive molecular interactions are considered. In the case of $\Delta b=0$, neither attractive nor repulsive molecular interactions are present between polymers.

Catsiff and Hewett ${ }^{19}$ have defined the ideal value of the interaction parameter, $b_{12}^{i d^{\prime}}$ as an arithmetic mean

$$
\begin{equation*}
b_{12}^{i d^{\prime}}=\left(\frac{b_{11}+b_{22}}{2}\right) \tag{5}
\end{equation*}
$$

This is useful for the systems in which the individual b_{11} or b_{22} values are negative since geometric
mean is meaningless in this case. The miscibility criterion Δb^{\prime} was proposed by Catsiff and Hewett in which positive sign shows miscibility and negative one indicates immiscibility.

On the other hand, Garcia et al. ${ }^{20}$ have proposed another definition for ideal value of the interaction parameter, $b_{m}^{i d}$ in the eq. (3), symbolized by $\left(b_{m}^{i d}\right)^{G}$ as

$$
\begin{equation*}
\left(b_{m}^{i d}\right)^{G}=b_{11} w_{1}^{2}+b_{22} w_{2}^{2} \tag{6}
\end{equation*}
$$

Furthermore, Garcia et al. have also proposed another miscibility criterion based on the difference between experimental and ideal values of $[\eta]_{m}$ assuming that the intrinsic viscosity can be treated as an excess property. The value of $[\eta]_{m}^{i d}$ has been defined as

$$
\begin{equation*}
[\eta]_{m}^{i d}=[\eta]_{1} w_{1}+[\eta]_{2} w_{2} \tag{7}
\end{equation*}
$$

where $[\eta]_{1}$ and $[\eta]_{2}$ are the intrinsic viscosities of corresponding polymers. Garcia et al. described the miscibility criteria as $(\Delta b)^{G}=b_{m}^{\text {exp }}-\left(b_{m}^{i d}\right)^{G}>0$ and $\Delta[\eta]=\left([\eta]_{m}^{\exp }-[\eta]_{m}^{i d}\right)<0$ if the blend is miscible or viceversa.

Sun et al. ${ }^{21}$ have proposed another miscibility criterion, α for polymer-polymer miscibility defined as

$$
\begin{equation*}
\alpha=k_{m}-\frac{k_{1} w_{1}^{2}[\eta]_{1}^{2}+2\left(k_{1} k_{2}\right)^{1 / 2} w_{1} w_{2}[\eta]_{1}[\eta]_{2}+k_{2} w_{2}^{2}[\eta]_{2}^{2}}{\left(w_{1}[\eta]_{1}+w_{2}[\eta]_{2}\right)^{2}} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& k_{1}=b_{1} /[\eta]_{1}^{2} ; \quad k_{2}=b_{2} /[\eta]_{2}^{2} ; \quad k_{m}=b_{m} /[\eta]_{m}^{2} \\
& \quad k_{12}=\frac{b_{12}}{[\eta]_{1}[\eta]_{2}} \tag{9}
\end{align*}
$$

With the weighted additive rule as shown in eq. (7), an expression of k_{m} can be concluded as

$$
\begin{equation*}
k_{m}=\frac{k_{1} w_{1}^{2}[\eta]_{1}^{2}+2 k_{12} w_{1} w_{2}[\eta]_{1}[\eta]_{2}+k_{2} w_{2}^{2}[\eta]_{2}^{2}}{\left(w_{1}[\eta]_{1}+w_{2}[\eta]_{2}\right)^{2}} \tag{10}
\end{equation*}
$$

Later, Jiang and Han^{22} derived an improved criterion by substituting eq. (10) to (8) and parameter α was replaced with β

$$
\begin{equation*}
\beta=\frac{2 w_{1} w_{2}[\eta]_{1}[\eta]_{2}}{\left(w_{1}[\eta]_{1}+w_{2}[\eta]_{2}\right)^{2}} \Delta k \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta k=k_{12}-\sqrt{k_{1} k_{2}} \tag{12}
\end{equation*}
$$

Sun et al. and Jiang and Han have proposed that the positive signs of α and β indicated miscibility of

Figure 1 The photo of the equipment which is the homemade modified Ubbelohde-type capillary viscometer in a constant temperature bath. [Color figure can be viewed in the online issue, which is available at www.interscience. wiley.com.]
the blend, respectively, i.e. $\alpha>0$ and $\beta>0$ if miscibility exist, $\alpha<0$ and $\beta<0$ if immiscibility exist between polymers in the blend.

EXPERIMENTAL

$\operatorname{PAr}\left(\rho=1.21 \mathrm{~g} / \mathrm{cm}^{3}\right)$ and $\operatorname{PC}\left(\rho=1.20 \mathrm{~g} / \mathrm{cm}^{3}\right)$ were provided as pellets by Amoco and General Electric Corp. The number average molecular weights of the polymers were determined as 14,500 and $31,000 \mathrm{~g} /$ mol^{1} for PAr and PC, respectively, by gel permeation chromatography. Chloroform was supplied from Merck AG Inc. GPC measurements were performed with an Agielent model 1100 instrument consisting of pump and refractive-index and UV detectors and three Waters Styragel columns (HR4, HR3, and HR2). Both of the polymers were purified by being dissolved in chloroform as a dilute solution and precipitated in a large amount of methanol. DSC measure-
ments were performed on about 7 mg samples with a Perkin Elmer Pyris DSC 6 Series. The DSC curves were recorded at a heating and cooling rate of $10^{\circ} \mathrm{C}$ min^{-1} in two scans between 323 and 523 K . The second scans were reported in the paper.

FTIR spectra were collected using a Perkin Elmer Spectrum One FTIR spectrometer with a diamond micro-ATR accessory. The individual polymer samples were placed onto the ATR crystal and the anvil was hand-tightened to apply pressure. FTIR spectra of 64 scans at $4 \mathrm{~cm}^{-1}$ resolution were added and averaged to obtain the single-beam background and sample spectra.

All viscosity measurements were performed at $25^{\circ} \mathrm{C}$ using a home-made modified Ubbelohde-type capillary viscometer in a constant temperature bath controlled with $\pm 0.02^{\circ} \mathrm{C}$ by a Huber type electronically controlled thermostat (Fig. 1). Stock solutions of the binary and ternary systems were freshly prepared by dissolving appropriate amount of polymers in chloroform into a concentration of $0.125 \mathrm{~g} / 25 \mathrm{~cm}^{3}$ solutions. For each measurement, $7 \mathrm{~cm}^{3}$ stock solution was loaded into the viscosimeter and diluted by adding $2 \mathrm{~cm}^{3}$ chloroform to yield five lower concentrations. The elution time of each solution was taken as an average of four readings agreed to within $\pm 0.5 \%$.

RESULTS AND DISCUSSION

Reduced viscosities in different compositions of PAr/PC: 0/100, 20/80, 40/60, 60/40, 80/20, 100/0 were measured at $25^{\circ} \mathrm{C}$. Figure 2 shows the Huggins' plots for the pure components and their blends

Figure 2 Huggins' plots for pure PAr, PC and their blends in compositions of PAr/PC: 0/100, 20/80, 40/60, $60 / 40,80 / 20,100 / 0$ at $25^{\circ} \mathrm{C}$.

TABLE I
Experimental Dilute Solution Viscosity Data of the Blends and Constituent Polymers at $25^{\circ} \mathrm{C}$

PAr/PC	$b_{m}^{\text {exp }}\left(\mathrm{cm}^{6} / \mathrm{g}^{2}\right)$	$\left[\eta^{\text {exp }}\right]\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	k_{H}	r^{2}
$100 / 0$	0.1182	0.4836	0.5054	0.985
$80 / 20$	0.1295	0.4997	0.5186	0.908
$60 / 40$	0.1291	0.5171	0.4828	0.944
$40 / 60$	0.1363	0.5444	0.4599	0.982
$20 / 80$	0.1419	0.5567	0.4579	0.993
$0 / 100$	0.1430	0.5892	0.4119	0.885

at $25^{\circ} \mathrm{C}$. The linear relationships were observed for the polymers and their blends studied.

The $b_{m}^{\exp }$ and k_{H} were found from slopes of the experimental lines in Figure 2 using eqs. (1) and (2). The values of $b_{m}^{\exp }$ and the Huggins' coefficient k_{H} were given in Table I.

Theoretically, k_{H} of a flexible polymer is around 0.5 and 0.3 for theta and good solvents, respectively. However, k_{H} of a rigid polymer varies around 0.88 and 0.69 for theta and good solvents, respectively. ${ }^{23}$

The Huggins' coefficients of all blends and constituent polymers suggest that the shapes of PAr, PC and their blends in the solution under the studied conditions were semi rigid because the values of k_{H} take part between 0.4 and 0.5 in chloroform which is a good solvent.

The miscibility criteria proposed by Krigbaum and Wall, Catsiff and Hewett and Garcia et al. were given in Table II. The signs of the miscibility criteria, i.e. $\Delta b>0, \Delta b^{\prime}>0,(\Delta b)^{G}>0$, and $\Delta[\eta]<0$, shows that $\mathrm{PAr} / \mathrm{PC}$ are miscible and attractive intermolecular interactions are present in the blends.

The plots of the interaction parameters, α and β, which are calculated using eqs. (8)-(12) against composition of the blends, were illustrated in Figure 3.

It can be concluded that from the figure that PAr/ PC blends are miscible for all of the studied compositions since the values of the parameters α and β are positive. It should be noted that the values of α are lower at compositions close to $50 / 50$ than other compositions.

TABLE II
The Miscibility Criteria of PAr/PC blends: Krigbaum and Wall (Δb), Catsiff and Hewett (Δb^{\prime}), Garcia et al. $\left((\Delta b)^{G}\right.$ and $\left.\Delta[\eta]\right)$

	Δb $\left(\mathrm{~cm}^{6} / \mathrm{g}^{2}\right)$	Δb^{\prime} $\left(\mathrm{cm}^{6} / \mathrm{g}^{2}\right)$	$(\Delta b)^{G}$ $\left(\mathrm{~cm}^{6} / \mathrm{g}^{2}\right)$	$\Delta[\eta]$ $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	Miscibility
PAr/PC	0.0065	0.0063	0.0481	-0.0050	Miscible
$80 / 20$	0.0010	0.0637	-0.0087	Miscible	
$60 / 40$	0.0013	0.0010	0.0035	-0.0026	Miscible
$40 / 60$	0.0035	0.0032	0.0659	-0.0114	Miscible
$20 / 80$	0.0040	0.0039	0.0456	-0.010	

Figure 3 Variation of interaction parameters α and β with weight fraction of PAr in the blends.

The FTIR/ATR spectra of PC, PAr and their blends in the compositions of $80 / 20,60 / 40,40 / 60$, 20/80 were presented in Figure 4.

Figure $4 \mathrm{FT} / \mathrm{IR}$ ATR spectra of PAr, PC, and PAr/PC blend in compositions at 80/20, 60/40, 40/60, 20/80. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 5 DSC thermograms of PAr, PC, and PAr/PC blend compositions at $80 / 20,60 / 40,40 / 60,20 / 80$.

As can be seen from Figure 4, the typical peaks of FTIR/ATR spectra of the films are centered at about 1777 and $1721 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{O}}\right), 1600 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{C}}\right)$ and $1496 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{C}}\right)$ for PAr; $1770 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{O}}\right)$ and $1505 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{C}}\right)$ for PC. It is easier to detect the changes in carbonyl absorption band of PAr and PC. Figure 4 shows a progressive shift up to $8 \mathrm{~cm}^{-1}$ and $17 \mathrm{~cm}^{-1}$ in the peak positions of the carbonyl stretching frequency of PAr by increasing concentration. This suggests that attractive forces are present between constituents of the blend.

To confirm the correct nature of the blend under consideration, DSC analysis also was carried out. DSC thermograms of the polymers and their blends are shown in Figure 5.

The glass transition temperatures of PAr, PAr/PC blends in compositions at 80/20,60/40, 40/60, 20/ 80 and PC were found as $177,173,153,147,146$ and 145 in ${ }^{\circ} \mathrm{C}$, respectively. It was seen that the blends studied exhibit single $T_{g} \mathrm{~s}$ which are between those of PAr and PC, indicating the miscibility of the blends. A lot of hypothetical equations were suggested in literature by many authors to envisage the T_{g} of a miscible blend in a certain composition. Among them, the equations of Gordon-Taylor ${ }^{24-26}$

$$
\begin{equation*}
T_{g}=\left[\frac{w_{1} T_{g 1}+K w_{2} T_{g^{2}}}{w_{1}+K w_{2}}\right] ; \quad K=\left(\frac{\rho_{1} T_{g 1}}{\rho_{2} T_{g^{2}}}\right) \tag{13}
\end{equation*}
$$

and Couchman ${ }^{27}$

$$
\begin{equation*}
\ln T_{g}=\left(\frac{w_{1} \Delta c_{p 1} \ln T_{g 1}+w_{2} \Delta C_{p 2} \ln T_{g 2}}{w_{1} \Delta C_{p 1}+w_{2} \Delta C_{p 2}}\right) \tag{14}
\end{equation*}
$$

are plotted in Figure 6 together with the experimental T_{g} values.

Where $T_{g i}, w_{i}, \rho_{i}$, and ΔC_{p} are the glass transition temperature, weight fraction, density and specific heat capacity difference between glass and rubber states of the component i in the blend, respectively. The ΔC_{p} value of PAr was given as $0.115 \mathrm{~J} / \mathrm{gK}$ by Robeson and that of PC was derived as $0.519 \mathrm{~J} / \mathrm{gK}$ from Figure 6.

The experimental T_{g} values of the blends exhibited a significant negative deviation than of the GordonTaylor's prediction however in agreement with the Couchman's equation. This was attributed to the low value of specific heat difference between the glass and rubber states of PAr as noted by Robeson to be a major factor in the Couchman's T_{g} versus composition relationship.

No studies are encountered in literature on determination of miscibility of PAr and PC by viscometry although a few ones are present based on DSC experiments with samples prepared by melt mixing or/and solution casting. In these studies, the authors focused on the existence of ester-exchange reactions in the blends. In Robeson's study, a PAr/PC : 50/50 mixture extruded at $265-270^{\circ} \mathrm{C}$ was compression molded at temperatures 260,320 , and $350^{\circ} \mathrm{C}$. A reasonably complete phase separation was encountered in samples molded at $260^{\circ} \mathrm{C}$, whereas at $320^{\circ} \mathrm{C}$, a partial miscibility was observed as evidenced by two T_{g} intermediate between the component values. Howevester-exchangeer, a miscibility was observed based on a single T_{g} at $350^{\circ} \mathrm{C}$. Robeson explained his results by formation of a copolymer due to esterexchange reactions above $350^{\circ} \mathrm{C} .{ }^{28}$ Eguiazabal et al. ${ }^{29}$

Figure 6 Glass transition temperature (T_{g}) versus composition of $\mathrm{PAr} / \mathrm{PC}$ blends: solid and dotted lines are produced from the equations proposed by Gordon-Taylor [eq. (13)] and Couchman [eq. (14)], respectively, the points are experimental data obtained by DSC.
and Mondragon et al. ${ }^{30}$ concluded that PAr and PC were miscible. Eguiazabal et al. determined a single T_{g} for their $50 / 50$ blend sample prepared by solution casting from chloroform and heating at $277^{\circ} \mathrm{C}$ for 20 min . Mondragon et al. were determined single $T_{g} \mathrm{~s}$ and transparent films for the samples prepared by both melt mixing and solution casting from chloroform and annealed at $300^{\circ} \mathrm{C}$ for 10 min . Robeson stated that PAr and PC are basically immiscible at ordinary conditions but become miscible as a result of ester-exchange reactions if samples are exposed to high temperatures for a long time, therefore, Eguiazabal et al. and Mondragon et al. observed single T_{g} as the time-temperature exposure conditions of both studies were significantly higher than the minimum condition in his study. ${ }^{30}$

In this study, a single T_{g} was observed at each composition by DSC measurements of the samples heated up to $250^{\circ} \mathrm{C}$ for a short time. In viscosity measurements, the samples are not exposed to any heating process. It seems that the miscibility of PAr and PC depends on the preparation conditions of the sample.

CONCLUSION

The miscibility of $\mathrm{PAr} / \mathrm{PC}$ blends was investigated by viscometry, FTIR, and DSC. FTIR/ATR spectra show that PAr interacts with PC through their carbonyl units in solid state. The single $T_{g} \mathrm{~s}$ of the blends obtained by DSC indicate that the blends are miscible in the solid state at the studied compositions. According to the miscibility criteria proposed by Krigbaum and Wall (Δb), Catsiff and Hewett $\left(\Delta b^{\prime}\right)$, Garcia et al., $\left\{(\Delta b)^{G}\right.$ and $\left.\Delta[\eta]\right\}$, Sun et al. (α) and Jiang et al. (β), PAr/PC blends are miscible in the compositions studied in chloroform solution. All miscibility criteria obtained by viscosity experiments indicate miscibility. However, the presence of an interaction observed by FTIR spectra implies that the values of the miscibility criteria should not be very close to zero. Thus, the results suggests that the criteria $(\Delta b)^{G}$ and α should be more certain since their values are higher than others. On the other hand, it is known that the miscibility of a component in a blend generally increases as its amount decreases. Therefore, it seems that α is more reasonable since
its values are higher at compositions of PAr/PC: 20/ 80 and $80 / 20$ than others.

References

1. Ye, Y.; Dan, W.; Zeng, R.; Lin, H.; Dan, N.; Guan, L.; Mi, Z. Eur Polym J 2007, 43, 2066.
2. Cabanelas, J. C.; Serrano, B.; Baselga, J. Macromolecules 2005, 38, 961.
3. Prasad, P.; Guru, G. S.; Shivakumar, H. R.; Rai, K. S. J Appl Polym Sci 2008, 110, 444.
4. Nurkeeva, Z. S.; Tyukova, I. S.; Suvorova, A. I.; Mun, G. A.; Dzhusupbekova, A. B.; Khutoryanskiy, W. Carbohydr Polym 2005, 62, 80.
5. Thunga, M.; Satapathy, B. K.; Weidisch, R.; Stamm, M.; Sommer, J. U.; Knoll, K. Eur Polym J 2009, 45, 537.
6. Crispim, E. G.; Rubira, A. F.; Muniz, E. C. Polymer 1999, 40, 129.
7. Aroguz, A. Z.; Kismir, Y. Eur Polym J 2006, 42, 311.
8. Aroguz, A. Z.; Baysal, B. M. Eur Polym J 2007, 3, 403.
9. Aroguz, A. Z.; Engin, H. H.; Baysal, B. M. Eur Polym J 2007, 43, 410.
10. Cakar, F.; Sakar, D.; Cankurtaran, O.; Karaman, F. Eur Polym J 2007, 43, 507.
11. Sakar, D.; Cakar, F.; Cankurtaran, O.; Karaman, F. Optoelectron Adv Mater Rapid Commun 2009, 3, 290.
12. Cakar, F.; Sakar, D.; Cankurtaran, O.; Karaman, F. Optoelectron Adv Mater Rapid Commun 2009, 3, 1106.
13. Cakar, F.; Cankurtaran, O. Optoelectron Adv Mater Rapid Commun 2009, 3, 1110.
14. http://www.bisphenol-a.org/human/polyplastics.html.
15. http://www.sdplastics.com/polycarb.html.
16. http://www.boedeker.com/ardel_p.html.
17. Huggins, M. L. J Am Chem Soc 1942, 64, 2716.
18. Krigbaum, R. W.; Wall, J. F. J Polym Sci 1950, 5, 505.
19. Catsiff, R. H. E.; Hewett, W. A. J Appl Polym Sci 1962, 6, 30.
20. Garcia, R.; Melad, O.; Gomez, C. M.; Figueruelo, J. E.; Campos, A. Eur Polym J 1999, 35, 47.
21. Sun, Z.; Wang, W.; Feng, Z. Eur Polym J 1992, 28, 1259.
22. Jiang, W. H.; Han, S. J. Eur Polym J 1998, 34, 1579.
23. Bohdanecky, M.; Kovar, J. Viscosity of Polymer Solutions; Elsevier: Amsterdam, 1982.
24. Fukuoka, L.; Makita, M.; Yamamura, S. Chem Pharm Bull 1989, 37, 1047.
25. Craig, D. Q. M.; Royall, P. G.; Kett, V. L.; Hopton, M. L. Int J Pharm 1999, 179, 179.
26. Patterson, J. E.; James, M. B.; Forster, A. H.; Lancaster, R. W.; Butler, J. M.; Rades, T. Int J Pharm 2007, 22, 336.
27. Couchman, P. R. Macromolecules 1978, 11, 1156.
28. Robeson, L. M. J Appl Polym Sci 1985, 30, 4081.
29. Eguiazabal, J. I.; Calahorra, M. E.; Cortazar, M. M.; Irwin, J. J. Polym Eng Sci 1984, 24, 608.
30. Mondragon, I.; Cortazar, M.; Guzman, G. M. Macromol Chem 1983, 184, 1741.

[^0]: Correspondence to: O. Cankurtaran (kurtaran@yildiz.edu. tr).

 Contract grant sponsor: Scientific Research Project Coordination Center of Yildiz Technical University, Turkey.

 Journal of Applied Polymer Science, Vol. 117, 309-314 (2010)
 © 2010 Wiley Periodicals, Inc.

